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SUMMARY
SYNTHESIS OF IMPROVED POLYESTER RESINS

Eighteen aromatic unsaturated polyester prepolymers were synthesized
using a modified interfacial condensation reaction. These prepolymers were
evaluated for their potential to provide a char forming resin. A total of 27
unsaturated reactive monomers were also screened as a coreactant solvent for

the polyester prepolymer.

The best system contained a polyester prepolymer of phthalic, fumaric
and diphenic acids reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxy-
phenyl)fluorene. This prepolymer was found to be very soluble in several
reactive monomers including styrene, divinylbenzene, triallyl cyanurate,
diallyl isophthalate and methylvinylpyridine. It provided anaerobic char
yields as high as 41 percent at 800°C, and distortion temperature under
load (DTUL) as high as 158°C.

This combination of good solubility and char yield represents a
significant improvement over state-of-the-art polyester resins.

Composites prepared with the resin (prepolymer with styrene) and Thornel
300 carbon fiber failed to produce acceptable mechanical properties, possibly
due to inhibition of the free radical cure and/or lack of wetting of the
carbon fibers. It is believed this problem can be overcome by the use of a
polyester compatible size on the fiber and/or use of reactive monomers other
than styrene with the prepolymer.
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SECTION I
INTRODUCTION

BACKGROUND

When graphite fiber/epoxy composites are burned, the graphite fibers
burn less rapidly than the matrix resin, and thereby present the potential
for free fibers to be swept into the air by the fire. Free graphite fibers
have the potential of interfering with the electrical equipment used for

communication and for other functions.

This program was initiated to develop a polyester resin that chars
in a fire environment. It is assumed that, if this resin char erodes at
about the same rate as the graphite fiber, no fiber will be freed by the fire.
Additional requirements are that the resin will be suitable for long term
thermooxidative stability in the range of 149 to 177°C (300° to 350°F); the
resin should be inexpensive; and must be easily processable into graphite

fiber composites.

Polyester resins are logical candidates for this study because of their

low cost, good mechanical properties, and excellent processing characteristics.

They also have the advantage that it is possible to vary the properties over
a wide range by careful selection of the starting materials used in the resin.
Unfortunately, available polyester resins are generally unsuitable for high
temperature service, and tend to erode rapidly in a fire situation. It is
therefore the objective of this program to select the proper starting mono-
mers to overcome these problems, with minimum sacrifice of the excellent pro-

cessability of polyester resins.
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APPROACH

Polyesters are principally divided between saturated and unsaturated
products. Saturated polyesters are used typically in films, fibers or cross-
linked coatings. Unsaturated polyester resins are of interest to this pro-
gram since they are used widely as laminating and molding materials.

A typical uncured polyester laminating resin is a linear polyester
(alkyd) prepolymer, made from one or more diols and diacids, and dissolved
in a reactive solvent. In typical commercial general purpose laminating
resins, the diol is propylene glycol; the two diacids are fumaric, (or maleic)
acid and phthalic acid (or isophthalic acid); and the reactive monomer is
styrene as sketched below.

~ 0 CH=CH,
—0-C 0 CHy 0 0 CH5
1l | 1] " I
C-O-CHZ-CH-O-C—CH=CH—C-0-CHZ-CH <::>
AN g
{
v n Styrene (30%) f

Polyester Prepolymer (70%)
Mol. Wt. ~2000

[RASI S

P s e

Constituents of a typical polyester laminating resin.

In addition, several additives will be included in the liquid resin in-
cluding inhibitors, cure control agents, ultraviolet absorbers, etc. The
liquid resin is cured by a crosslinking through the unsaturation by a free
radical cure. Cure is usually initiated by a free radical source, or alter-
natively by various types of energy including heat, light or radiation.

P pn—

The most frequently used cure method is incorporation of an organic
peroxide into the resin., This peroxide is frequently called a catalyst but
is in fact consumed in the reaction. Since the addition cure process gives




off no volatiles, void free parts result if the monomers do not boil from
the reaction exotherm.

The previously described starting materials are used most frequently
since they are among the least expensive of the possible starting materials,
and give good overall properties. If better than average properties are
required or if there are specific requirements for some improved property
(e.g., fire resistance, flexibility, chemical resistance, etc.) many other
diols, diacids and reactive monomers can be substituted ir whole or in
part to give the desired properties. This substitution generally results in
an increased cost, and sometimes results in more difficult processing or the
partial loss of another desireable property.

It is also possible to modify the properties by changing the quantity
of unsaturation in the polyester backbone. Mole ratios of unsaturated to
saturated acids generally vary within the range of 1/3 to 3/1 which represents
between two and ten unsaturations per molecule. Resins from prepolymers with
Tower unsaturation ratios tend to be flexible while resins using higher
ratio prepolymers are brittle. Balanced resin properties are obtained from
prepolymers with unsaturation ratios of 1/1.

One of the more tedious tasks in the manufacture of polyester backbones
is finding ratios of starting materials that will result in the resin being
soluble in the reactive monomer. Specifically it has been found that the
resin must cure to provide homogeneous and clear products to obtain optimum
properties. It is not absolutely required that the polyester backbone be
soluble in the monomer at room temperature, however the solution must be
complete before final cure. It is known that symmetrical monomers such as
ethylene glycol or terephthalic acid cause excessive crystallinity in the
backbone polymer. Pendant groups break up the crystalline nature of materials
and lower their melting points thereby making them soluble in the reactive
monomer.

Another class of polyester resin is based on placing the reactive
groups on the ends of the polyester backbone and not within the backbone
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1
@é-o-cnz-cn=cnz

§-0-CH2-CH=CH2

Diallyl Phthalate (DAP)

LN
O-CHZ-CH=CH2

Triallyl Cyanurate (TAC)

.

= NS 0-CH_ -(H=
CHZ—CH-CHZ-O- F§ ‘ﬂ- 0 CH2 CH CH2

jtself. Such end capped backbones can also include unsaturation in the
backbone. Examples of this class of polyester resins include diallyl phtha-
late (DAP), triallyl cyanurate (TAC), diallyl naphthalate (DAN) or acrylate
endcaps on epoxy resins (Epocryl as shown below):

0
1]
0 (\ C-0-CHy-CH=CH;
CH2=CH'CH2'0‘C' :

2,6-Diallyl Naphthalate (DAN)

OH 0

Epocryl (EPON 828 with acrylic acid)

A major difference from the fumaric or maleic acid ester type of

polyester is that they can be more difficult to cure and thus require

elevated temperature for cure.
quently used precatalyzed, in preimpregnated glass fabric or as molding

materials.

Since they are "slower" they are most fre-

Within the framework of polyester chemistry and preferred monomers
discussed above, several approaches can be taken toward improving the char
yield of such systems. The principles discussed below outiine our approach
to improved char yield polyester resins.

It is known that polyester resins deteriorate under heat principally

] due to the thermal unzipping of the free radical cured portion of the polymer,
U and that the polyester backbone is relatively stable thermally. Generally,

' higher aromatic content backbones provide higher thermal stability. Further

| 3 1 M
¢ <~(©— 0-CH,-CH,-CH,-0-C-CH=CH
CH
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to obtain a high carbon char yield from a polymer, it was assumed that the
prepolymer should have a high initial aromatic carbon content. With this

in mind, it is necessary to remove the bulk of the alphatic portions of the
polyester backbone and replace them with aromatic segments in order to obtain
improved heat resistance and the potential for good carbon char. In this
regard, the use of phthalic acid is acceptable, however naphthalene or
biphenyl dicarboxylic acids were expected to provide higher char yields

than phthalic acid. The unsaturated portion of the backbone (e.g., fumaric
acid) is required for cure of such backbones and cannot be replaced with
aromatic groups. However, the likely place to increase the aromatic content
of the polyester backbone is in its diol portion. This could be accomplished
with a variety of bisphenols and naphthalene diols, however, such changes
reduce the solubility of the polyester backbone in the reactive monomer.

Depolymerization of the free radical cured portion of styrene-modified
polyesters occurs readily, liberating styrene monomer. A solution to this
problem could be to use reactive monomers that are multifunctional or that
contain polar groups, so that under heat, the monomer is not lost as rapidly
as styrene., Several obvious choices of the available 1iquid monomers to
replace styrene included divinylbenzene, diallylphthalate, triallylcyanurate,
or vinylpyridine.

An alternate approach to optimizing char yield is to add char forming
catalysts such as phosphorous compounds. Since phosphate esters can be used
in the manufacture of polyester resins, the ideal method to introduce such 1

catalysts may be to incorporate phosphorous into the polymer backbone.




SECTION II
OBJECTIVE

The principal objective of this program was to synthesize and evaluate
new polyester resins with improved heat resistance and char-forming proper-
ties for use in carbon/graphite fiber composites.

Ancillary objectives included retention of the excellent processability
of polyesters and attainment of quality graphite composites.




SECTION III
RESULTS AND DISCUSSION

UNSATURATED POLYESTER PREPOLYMERS

Prepolymer Synthesis and Characterization

A literature survey of recent synthetic methods for aromatic polyester
prepolymers and saturated polyester polymers showed that the general method
used is an interfacial condensation technique (References 1 through 8).
Typically, an aromatic diacid chloride is dissolved in an organic solvent
and added with stirring to a bisphenol dissolved in aqueous NaOH containing
a small amount of surfactant.

Using this method, Howerton (Reference 6) reported that solutions of
unendcapped aromatic polyesters (saturated) degraded or gelled on standing,
and that these effects were more severe in solvents that were hydrogen donors
such as alcohols. He found that these effects could be prevented by using
monofunctional polymer chain terminators (phenols or aromatic acids). He
also found that these chain terminators significantly improved the heat
resistance of the polymers. Based on this patent, all polyester prepolymers
made on this program contained monofunctional endcaps on the prepolymer chain
to significantly reduce the residual unreacted phenolic and acid groups.

A preliminary reaction of 2,6-naphthalene dicarboxylic acid chloride
with 2,6-naphthalene diol in 1,2-dichloroethane using this method, showed
that the polymer quickly became insoluble in the solvent and that the proce-
dure would not be suitable for further endcapping with allyl alcohoi.
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Aito (Reference 8) reported a commercial polyester resin from 2,6-
diallyl naphthalate (DAN) that had appreciably better flexural strength and
thermal stability at 260°C than either diallyl phthalate or diallyl isophtha-
late resins. Unfortunately, communication with Teijim Limited (Japan)
revealed that the DAN prepolymer and monomer along with the 2,6-naphthalene
dicarboxylic acid were no longer available.

Morgan (Reference 1) reported that chloro-bromo solvents were better
solvents for aromatic polyesters than the corresponding dichlorinated
solvent. Specifically, he recommends chlorobromethane and l-chloro-1-
bromoethane. Other solvents used by various authors to dissolve aromatic
polyesters included m-cresol, sym-tetrachloroethane, phenol, chloroform,
1,2-dichloroethane, tetrahydrofuran, pyridine, 1,1,2-trichloroethane, and
dioxane.

The method used exclusively on this program is detailed in a patent
by Sokolov and Kudim (Reference 7). These investigators used a modified
interfacial condensation method along with added alkali metal salts to :l
obtain yields as high as 99.7 percent of the desired aromatic polyester :1
polymers. This method is also successful for preparation of unsaturated ;
polyester resins. Sokolov and Kudim's modification is to use organic solvents
with moderately good solubility in water such as dioxane or tetrahydrofuran
(THF).

With this procedure, the inorganic salt (KC1 or NaCl) reduces the
rate of hydrolysis of the acid chloride, while the increased solubility
allows the polymerization to proceed at a high rate.

Nineteen different unsaturated polyester prepolymers were prepared
using the method described by Sokolov. Table 1 provides the composition of
these prepolymers, their calculated theoretical molecular weights, and the
yields obtained from approximately 10 gram (0,005 mole) reactions.

The table shows theoretical molecular weights in the range of 1700 to
2800, which is typical of many commercial polyester prepolymers. It can be
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seen that the prepolymers are all reaction products of six mole ratios of
diacid chloride with five mole ratios of diphenol, end capped with two mole
ratios of l-naphthol or allyl alcohol. In addition the table shows yields
in the range of 26 to 90 percent.

Experimental procedures used to make these prepolymers are discussed
in the experiment section of this report.

Most of the prepolymers were endcapped with l-naphthol. This endcap
was selected to increase the char yield and heat resistance of the material,
and to reduce the degradation on standing as reported by Howerton.

The allyl endcap on the other prepolymers provided the needed unsatura-
tions for crosslinking during the cure cycle. Since allyl alcohol is not as
acidic as phenol, it was pre-reacted with the acid chloride prior to the
polymerization reaction.

Prepolymers P2 through P5, which were made using the acid chloride of
2,6-naphthalenedicarboxylic and (NDCA), were easier to purify than the other
prepolymers as they precipitated as fine powders during reaction workup. In
contrast, the other prepolymers tended to be somewhat sticky, especially
the prepolymers with high phthalic acid or 9,9-bis(4-hydroxyphenyl)fluorene
(BHPF) contents. While these NDCA prepolymers showed better than average
char yields, they had melting points above 300°C, and were insoluble in the
reactive monomers. Evaluation of NDCA stopped when it was found that the
monomer was no longer commercially available.

In contrast to the NDCA prepolymers which precipitate from the prepoly-
mer purification/isolation step as fine powders, prepolymers made with more
than two mole ratios of phthalic acid (PA) tended to 0il out of solution,
thereby making their purification difficult. This problem of oiling
out of solution was observed with prepolymer P15 which contained a high
mole ratio of 9,9-bis(4-hydroxyphenyl)fluorene (BHPF). Other prepolymers
tended to precipate as sticky solids, however, all of the prepolymers were
powderable after their final purification.

11
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The fact that some materials did not precipitate as a fine powder indi-
cates that they are not highly crystallized and that they should have greater
solubility in the reactive monomers. In order to further reduce the
crystallinity and thereby increase the solubility of the prepolymers in the
reactive monomers, it is frequently found necessary to have several different
diacids and diols in the prepolymer.

Four prepolymers which incorporated different amounts of phosphorus
were prepared to determine the effect of this element on the char yield.
One prepolymer (P11) was prepared from p-phenylenedi(phenylphosphonyl chloride)
(PPPC). The PPPC monomer was made from the p-phenylene bis(magnesium bromide)
Grignard reaction with phenylphosphonyl dichloride (PPDC) as shown below.

THF PPDC 0 0
Br@Br + Mg —> Bng<O>MgBr — - F"'<O>P - Cl + 2MgBrCl
HEXANE ) b

PPPC

The PPPC used in the prepolymer synthesis was contaminated with a
small amount of PPDC as indicated by elemental analysis. Further attempts
to remove the PPDC by distillation under vacuum caused the product to
darken and decompose. It was eventually decided to use the impure PPPC
for the synthesis because a small quantity of PPDC should not greatly effect
the nature of the prepolymer. The prepolymer recovered from the reaction
was a greyish powder which decomposed on vacuum drying at 120°C to a black
char-like foam.

The other three phosphorus containing prepolymers (P8 to P10) where
I-naphthol endcapped reaction products of 2,7-naphthalene diol
with various ratios of PPDC, phthalic and fumaric acid (chlorides). Elemental
analysis of prepolymers P8 and P10 for phosphorus shows that this element
was present in approximately 1/3 the theoretical level in both polymers.
This suggests that the phosphorus type acid chloride may not work well with
the Sckolov procedure.

12
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Polyester prepolymers prepared with BHPF all had generally good
solubility and reasonable char yields. The cross-planar nature of the BHPF
molecule appears to reduce the crystalline nature of its prepolymers and
thereby increase the solubility of such prepolymers in reactive monomers.
The highly aromatic nature of the molecule also helps to improve the char

yield of its polymer.

The initial lot of BHPF monomer was prepared at Acurex in 90 percent
yield (crude) by the method described by Morgan (Reference 1). This synthe-
sis route is sketched below,

Fluorenone Phenol

This purified diol, and a second lot of BHPF supplied by NASA Ames*, were
used to make several prepolymers.

4_ The first prepolymer prepared from the BHPF (allyl endcapped polymer
: with 2,6-NDCA acid chloride) (P19, Table 1) failed to precipitate from the
reaction mixture when excess water was added. Copious quantities of unreac-
ted monomer precipitated, however when the solution was acidified. The
reason for the apparent hydrolysis instead of polymerization is not known.

Initial prepolymer preparation using BHPF used the material in an g
aqueous NaOH°KCl solution in which the BHPF is insoluble at room temperature. {

. . . . |

. Very slight warming causes the compound to go into solution. Using this P
i

warmed solution in the Sokolov procedure has resulted in relatively high
reaction exotherms, poor yields and low molecular weights. The solubility

3 of the BHPF used to make the later prepolymers (P15 to P18) was improved by

f adding THF to the H20°Na0H'KC1 solvent (approximately 40 THF/100 HZO-NaOH-KC1).

*Courtesy of Dr. John Parker.

.
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With the added THF the BHPF was very soluble at room temperature.

Prepolymer P15 was made by mixing the two solutions of the reactants
at room temperature. A significant exotherm resulted, and the prepolymer
was recovered in low yield. Prepolymers P16 to P18 were made after the
reactants were cooled to well below room temperature. No apparent exotherm
was detected (touch) with these reactions, and excellent yields were obtained.

The yield of prepolymer P6 was also increased from 42 percent to 76
percent with the only difference being that the higher yield material was
cooled prior to reaction. It therefore seems that cooling of the reaction
ingredients prior to mixing is mandatory.

Diphenic acid (biphenyl-2,2'-dicarboxylic acid) was selected for use
in prepolymers P12 through P18 because of its aromatic content and its
structure. Its structure should reduce prepolymer crystallinity and improve
its overall solubility in the reactive monomer.

The combination of diphenic acid with BHPF results in prepolymers
which have significantly better solubility than the other prepolymers tested.
The combination also produces resins which give excellent char yields for

polyester systems. Based on these two important properties, this prepolymer
system was selected for the fabrication of carbon fiber reinforced laminates
since none of the other prepolymer systems evaluated had demonstrated such

potential for success.
The infrared spectrum of this prepolymer (P16) is given in Figure 1.

Molecular weight determination on several prepolymers was attempted.
Suitable solvents could not be obtained for prepolymers which contained NDCA.
The molecular weights for two prepolymers that were soluble in THF is given
$ in Table 1.
| .
The weight average molecular weight, ﬁg was calculated from the mole
ratios of the monomers, while the number average molecular ﬁh was found ex-
perimentally by osmometry. The data in Table 1 shows reasonable agreement

14
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in the prepolymer molecular weight values, however prepalymer P7 appears to
contain low molecular weight fragments or monomers.

The planned analysis for unsaturation was dropped because the methods
are not quantitative. A brief review of analytical procedures and conversa-
tions with polyester manufacturers indicated unsaturation tests are not
normally run on polyester prepolymers since they are only meaningful if
similar polymers of known unsaturation are used as standards.

Prepolymer Scaleup

Prepolymer P16 was selected to be used for the matrix material in the
carbon fiber reinforced composites.

In order to meet this larger demand for resin, the prepolymer synthesis
was scaled-up in two steps. The first scaleup synthesis was to a 100 gram
quantity (ten times the previous preparation).

The procedure used was similar to the method used previously in which
acid chlorides are reacted with alkaline solutions of phenols in a two
phase tetrahydrofuran (THF)/salt water solution,

It is necessary to keep the highly exothermic reaction cooled to
obtain good yields. In small scale reactions, external cooling prior to
and during the reaction was adequate to control the exotherm. With the
100g preparation, half the water was replaced with ice. It was also necessary
to dissolve the 9,9-bis(4-hydroxyphenyl)fluorene in THF as it is almost
insoluble in cold alkaline solutions. This procedure is given in the experi-
mental section of this report.

Attempts to further scaleup the synthesis of the polyester prepolymer
by a factor of three over the 100 gram scale discussed above resulted in a
low yield. The yield obtained was only 34 percent compared to the 87 percent
yield obtained from the 100g preparation. The bulk of the reaction mixture
appeared to be low molecular weight material which is soluble in alcohol.

16




Infrared analysis (heat), gel properties and DTULs (styrene comonomer) of resin
samples from the 100 and 300 gram prepolymer preparations were essentially
equivalent. The prepolymer from the 300 gram preparation is more readily
soluble in styrene than the 100g prepolymer. Prepolymer molecular weight
distribution in the prepolymer is the likely difference in the two prepoly-
mers however, without further study actual differences in the two prepolymers
remain speculative.

UNSATURATED LIQUID MONOMERS

A number of commercially available monomeric vinyl, ailyl and methacry-
late derivatives were evaluated for their char forming properties. The best
materials selected from this study were then cured with polyester prepolymers
described previously and again evaluated for their char yields. It was
found that the reactive monomers did not contribute to the polymer char yield.

The reactive monomer serves several important functions in a polyes-
ter resin. It obviously contributes to the final physical properties of the
system, but more important it acts as a solvent for the system, and is re-
guired for the free radical cure. Fumaric acid unsaturation does not cure
readily under typical polyester cure conditions unless a suitably reactive
monomer is available to copolymerize with it.

The unsaturated monomers shown in Table 2 were polymerized in glass
vials using l1-gram samples of monomer with 0.01g of mixed organic peroxides
as initiator. The peroxides used were benzoyl peroxide, cumene hydroperoxide,
t-butyl peroxybenzoate and 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane. They
were used as a 10 percent total solids solution in toluene. These peroxides
decompose at different temperatures so that cure continues as the samples
are heated. The cure cycle used was to heat the samples in 25°C increments
between 25°C and 175°C and hold the temperature for 45 minute intervals at
each temperature., After cure, the samples were reweighed and placed in a
400°C furnace (air) for one hour and the weight loss determined. The samples
were then placed in a 700°C furnace (air) for an additional ten minutes and
the weight Toss again determined.

17




£0°0 ' diey 5°01 £°66 pL10S pPLL0OS pL10S aje|Audeyjawtp Loudydsey ° /2
66°0 850" €0°0 re diey 0°01 0°s2 weoy PLIOS | pinbLy 3uLpLIAd L AULA-G- [ AYIaN-2 "92
06°0 09°1- £0°0 0°01 -00d 9°L2 £'Gy |pinbi7 34ed pinbil ¢ priog 3uadeayjue(AuLp-6 52
o ov - 50°0 51 poog 0°L €2 weo p10S pPL10OS 91070QJeD | AULA-N "$2
-- -- -- £0 1 pLnbyq pinbeq pinb1q ajozepLuf |ALLy-T "€2
60°0  (£°0 4004 2°¢ v'9 P110S pinbi1 © pinby auan|oatAutp -22
5%0°0 9b°0- -- -- -- -- -- pLnbt1 pinbiy | pinbiy auauuoquoutAuLpA-g 12
v0°0  8I°0 1004 870 §'6 | pinb1 pLbL] pinbLy i auexayo Aot AuLALaL-p*2°T "02
20°0 It 4ood §°2 0°S pL10S pLbi pinbyy aje(Auoeyjau [ApLdAL9 61
: 0e"1 05°0- -- -- -- -- €1 pL1os ptnbil  pinbyy autpLdhdiAutp-z 81
! (et 6°0- 91'0  L£°0 ared 2°¢ 09 weoy prios - pinbLy auaukysihang-3-d /1
£0°0 1 died Lt 't | uweoy pLLOS pinbey ate|Auoeylawtp 3ua(hy13 91
. 90°0 81°0 4004 81 02 PiLOS pLLOS pinbiy  ajeiAudeyrawio |0dA|63uaLAyY3aeaIa) ST
£6°0 96°0- 80°0  (£°0 pooy 82 0'v | PLLOS pLnbLy pLnbLy auauhysAyIawLg-6*z bl
6L ¢ 28°0- -- -- s | opuos pLnbg pinbLy _ sutjoutnbihutp-z “€1
0°1 82°0- £1°0 9°0 dieq vl 9°11 w weo4 pLLos pinbry ! autpLakd|AuLp-y 21
w v1°0 p11- 20°0 o't died €L 9'01 | weoy pLLOS pinbry ! auouptoaskd Autp-N 11
M p1°0 Ve pooy v ve 0°2¢ | weoy A3005 pinbyy pinbyy a3tydsoyd (KL qeta) 01
: v'o vz poo9 8'6 v°EL ,  PLIOS ptnbiy 1 pinby ajeajew (A{teig 6
20°0 9°2 diey 6°6 £°21 - pLos pLnbL1 © pinbiy ajeqauny (£Altetg '8
01’0 L0 poog " A 9L 9'01 ; PLLOS ptLoS pinbLy aye|eyzydosy [Al(eid L
v90°0 9¢° 0+ 20°0 22 arey 6'¢ £'8 ;, PLos Pt10S pinbLy ajeeyud (Ai(etg ‘g
SL°0 8%°0- 90°0 6'€ *199x1 v 22 €66 , PLL0S pLobyy pt1os tAuaydiLqhutp-t g
52°1 8¢°0- 50°0 S'¢ poo9 "7 261 2'62 pLios pLnbL1 PLIOS aualeyiydeu [ AutA-7
LTS - £1°0 81 *199x3 (22)9°€2 (65)6°2¢ ‘(pLloS)weoy  pL|oS pinbiy auazuaqlhutag ¢
20°0 00°1- v'0 £ *13ox3 £ 41 £°99 pi|oS PLLOS ptrbLy ajeanueks [Ailets) "2
000°1 08°0- -- -- -- LN 60 pLios pinbey pinbiq CITEN Vs O
b 3 23/6 aswouow  y1buaalg anpLsay u.o..mwc-coeo 149 ICTARER IR L [T
0 weub uad Jey) 4 i 4y T 43340 0 JA3WOUOK
weo4 Wweo4 40 | onptsay g
= mE:-mb. o N
- (6 "334) saniep a/b 200049 “utw 0T euotILppe Jaly i 3an) uayyy -doud .
P A —
SYIWONOW QILIVANLYSNN "2 378Vl1

18




Four of the monomers were evaluated separately from the others. The
results of these later tests (Nos. 24 to 27) are also given in Table 2.
Divinylbenzene was retested along with these four monomers as a control
(data in parenthesis after No. 3). The later data for divinylbenzene at
400°-425°C 100k very good when compared to the previous data, however, the
increase in char yield of divinylbenzene indicates that the test condition
may not have been as severe as in the first tests. The data at 700°C are
generally not as good as the better monomers examined previously. The %

exception to this is 9-vinylanthracene which produced a mushroom of nice
looking fine cell low density carboneous foam at 700°C. This foam however
had no mechanical strength.

These data were used to select promising monomers for additional
weight loss studies using TGA analysis.

Table 2 also shows the Alfrey and Price Q/e values* for a number of
these unsaturated monomers, These data are plotted in Figure 2. The "Q" value
is a measure of the stability of the free radical, while the "e" value is a
measure of the electrical nature of the molecule. Q/e values are used to
indicate as to whether two monomers will readily copolymerize under free
radical conditions. For an ideal alternating copolymerization, the two
monomers must have similar Q values and the "e" values must have opposite
signs.

Typical fumaric acid polyester resins have a positive "e" value and
"Q" values of one or slightly greater. Thus, styrene with Q/e values of

1.0 and -0.8 is an excellent coreactant for fumaric acid polyesters while a
monomer like methyl methacrylate (MMA) with Q/e values of 0.74 and +0.4 shows
little tendency to copolymerize with fumaric acid polyesters if it is the
only coreactant. However, if styrene is added to the fumaric acid polyester/
MMA blend, good polymers are produced because it has an opposite sign on the
"e" value, and can therefore readily coreact with both of :he other monomers.

*Additional information on the Q/e system can be found in many polymer or
polyester texts (Reference 10).
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Figure 2. Plot of d & e values for various monomers

Figure 2 shows that most of the vinyl monomers plotted have a reasonable
Q/e value for copolymerization with fumaric type polyesters. The poorest
choice of vinyl monomers appears to be N-vinyl pyrrolidinone which has a
rather low Q value. Allyl monomers have still lower Q values and copolymerize
well only with other allylic type polymers.

The polymers from the isothermal weight loss study given in Table 2
which showed the smallest weight losses were tested further using the TGA
technique in static air. Figures 3 through 14 show the weight loss curves
generated at a heating rate of 10°C/minute on 40 mesh samples (cured with the
previously described mixed catalyst system). For comparison, high molecular
weight (commercial) polystyrene was also run in static air and two of the
better monomers (triallyl cyanurate and divinylbenzene) were run under
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nitrogen (Figures 15 and 16).

Polytriallyl cyanurate (Figures 14 and 16) cured to a hard brittle
polymer and had a significantly improved TGA curve compared to high molecular
weight polystyrene., This monomer should produce good properties when blended
with allyl endcapped polyester resins, however, it can only be used in
small quantities as a comonomer in fumaric acid polyester resins.

Polydivinylbenzene TGA curves are shown in Figures 3 and 15. This
material also gives significantly better weight retention than polystyrene
in these tests and should make an 2xcellent replacement for styrene in
fumaric polyesters. The possible disadvantages with this monomer are that
it has very high cure shrinkage and is much more reactive than styrene and
therefore tends to make unstable blends with polyester resins. The sample
used in this test was commercial grade which was 55 to 60 percent divinyl-
benzene (unspecified isomer ratio) with the remainder being mostly ethyl-
vinylibenzene and some diethylbenzene.

Triallyl phosphite cured to a soot-like foam when gradually heated to
175°C under nitrogen. If this material is used as a comonomer in polyester
formulation in very small quantities, it is expected to act as a catalyst
for char formation.

The diallyl phathalate (DAP) and isophthalate polymers did not achieve
full cure after two hours at 175°C using three percent dicumyl peroxide ini-
tiator. The samples were som. /hat flexible and did not have the usual
hardness of DAP resins. This is also reflected in their relative poor TGA
curves (Figures 6 and 7).

The 4-vinylbiphenyl and the 2-vinyl-.phthalene monomers are both
solids at room temperature, but melted well before they cured making them
excellent candidates for use in a system that is solid at room temperature.
They could also be used as a comonomer with other liquids.
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It can be seen from examining the data that optimum cures of the mono-
mers were not achieved in many cases. For example, diallyl fumarate evaporated,
rather than cured, in the open container with mixed peroxide initiators.

Also examination of a number of the TGA curves show an initial weight loss

that is due to loss of unreacted monomer. This free monomer is typical of
free radical cures, however, the quantity of free monomer can usually be
reduced to acceptable levels by selection of the proper initiator system
and cure cycle. If proper cures can be achieved with the monomers, and with
additional crosslinking from incorporation of multifunctional polyester
backbones, improved performance from these materials would be expected.

PREPOLYMER - MONOMER BLENDS (RESINS)

Solubility Studies

The solubility of 18 polyester prepolymers in reactive monomers
selected on the results presented in the previous section is shown in Table
3. These data show solubilities at various prepolymer concentrations as
well as at both elevated and room temperatures. The elevated temperature
solubility determinations were from testing one gram of material in a glass
vial placed on a 150°C hotplate for one to five minutes. Sample testing
was complicated by some of the samples gelling (without peroxide) and the
monomer evaporation.

The data show that the polyester prepolymers made with naphthalene \
dicarboxylic acid (P2, P3, P4 and P5) are particularly insoluble when com- 1

pared with the other prepolymers, and the higher the ratio of the naphthalene
dicarboxylic acid to fumaric acid; the less soluble the polymer. The incor-
poration of QPOC]Z into the prepolymer reduces its solubility in the

solvents tried.

The relative solubilities of various ratios of equivalent 2,7-naphtha-
lene diol and BHPF polymers (P13, P15, P16, P17, and P18) indicate that the
prepolymer is most soluble at a naphthalene diol/BHPF mole ratio of 1.5/3.5
(P16).

e = e




TABLE 3. SOLUBILITIES OF POLYESTER PREPOLYMERS IN UNSATURATED
MONOMERS AT ELEVATED AND ROOM TEMPERATURE
REACTIVE MONOMER
[v¥)
=3
w a
- o«
w < >
. g 2 ": . 5 " .
E-l 2 z g 2 g g = 5 g 5
ol g g £ g = z g 2 g
o W z (&3 .1 x § g L4 — o tf
A d ud - o L. . = =< —
P > - > > > = x > > > =z
[=] z v - o - - -~ b4 = z wd
aw — <€ ) - ~ - wl — — — o
ad > - =< < < =4 x > > > >
[-372) —t -4 Cd — — — 0 [] [] [] —
Q. ~— (=1 - (=3 o o o o~ z z - wvy
T ’C_ .C_ A * * * - * . *« ’
= = = = = = = = = = =
LYy Y] wt [ Ly wd W [ at ad d
s . 2ls . ogls L ogls L gls J8ls L 2l L Els L Els L Bls L Els . 2
2 =z &% & &|2 & ¥(2 & &2 &]2 & #|2 x ¢l & &2 = ¥l & &2 = ¢
i Pl S 1 10}vs S 10Jvs PS 10fvs PS 10{S I 10JVvVS PS 10[S PS 10
Pl 1 70] VS 60] VS 60
P2 PS A 10QPS PS 10yPS 1 10)J1 1 101 I 10]T1 I 10fjPS PS 10
P2 1 7011 601 PS 60
P3 PS A 10§ PS PS 10]PS 1 10 PS 1 10]PpPs PS 10]PS PS 10{PS B 10{1 A 10
3|1 70§ ps 60| Ps 60 !
P4 I 701 1 60( PS 60 !
{
ps | 1 70] 1 60| 1 60 |
P6 S 1 10§ps PS 10§{S PS 10 PS I 10 S PS 101s? B 10fJI A 10 :
|
P& PS I 60§ PS PS 60} PS PSB 60 PS PS 33 S SB 33]1S PS 70 |
p7 S A 10pVS S 10{vsS S 10 S PS 10 VS VS 10| Ps?B 10 S B 10 ,
P7 PS 70] PS 60] PS 60 I
i |
pg | s 70] ps 60| ps 60 !
P9 PS A 10fS S 10jS PS 10 PS 1 10 S PS5 10/S C 10 S B8 10
P9 PS 70 S 60} S 60
P10 | PS 10158 60§ S 60
4 P12 LS PS 60§S SB 60]S PS 60 S PS 33 S 1B 33jVS S W
{
PI3JPS 1 60]S SB 60{S PS 60 S PSS 33 S I8 33gvs s 70 ;
PI4 ] PS I 60]S SB 60[S I 60 S PS5 33 S IB 33sS s 70 \
PI5] VS S 601 S SB 60f VS SB 60 s S 33 S IB 33]vs vs5 70 .
P16 | VS S 60J VS SB 60 VS SB 60 VS Vs 33 S I8 33} VS vS 70 ;
P17} S S 60]S SB 60]S S 60 s 33 S I 33Jvs s 70 :
] PIBE S S 60fS SB 60)S SB 60 S § 33 S IB 33gvs s 70 1
)
*  Weight percent prepolymer in mixture.
A Mixture exothermed and gelled during heating.
B Mixture is solid at RT,
C  Mixture is semisolid at RT.
1 Insoluble.
PS . Partially soluble.
35 Soluble,

Yery soluble. 37




Ty e %

A similar comparison of phthalic acid/diphenic acid mole ratios in
prepolymers P12, P13, P14, and P6 shows that higher concentrations of diphenic
acid generally improve the solubility of the prepolymer in the monomer.

Prepolymers with high 2,7-naphthalene diol contents tend to only be
soluble hot whereas, prepolymers with high BHPF contents remain soluble at
room temperature. Their blends in diallyl phthalate and triallyl cyanurate
freeze rapidly at room temperature to make clear glassy resins while similar
blends in styrene and divinyl benzene solidify overnight.

Further solubility studies with prepolymer P16 show that it is
readily soluble hot at 75 weight percent in a styrene/TAC/DVB blend but
that solubility becomes marginal when the concentration is increased to 85
percent.

Char Properties

Char yields obtained on early prepolymer/reactive monomer blends
(cured) are given in Table 4. The test was run in one dram vials by the
same method described with the monomers in the previous section. This method
produces a static air environment which is intermediate in severity between
air and inert environments. The test has the advantage however that it
somewhat represents the case wherein a burning laminate is exposed to air
on the surface, but not in the interior of the laminate.

The data between the divinylbenzene and two allyl monomers are not
strictly comparable as the two groups were run at different times, with
different sample sizes and with different monomer ratios.

The best char yields were obtained with naphthalene dicarboxylic
acid resins (P2 - P5). However, as reported above these materials are insolu-
ble in the monomers employed and the resulting "cured" polymers did not fuse
together, making them unprocessable unless a better solvent system could be
found.
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Good char yields were also obtained by incorporation of phosphorus
into the polymer (P8 - P10). The data show increasing char yields with
increasing phosphorous content.

The polymer (P7) based on 9,9-bis(4-hydroxyphenyl)fluorene gave
generally better char yields than the equivalent naphthalene diol polymer
(P4) and resulted in a stronger char. This stronger char is considered an
important property necessary to keep the burning composite together. Based
on these data, it therefore appears that the fluorene derivative is pre-
ferable over naphthalene diol for the purposes of this program.

Triallyl cyanurate also generally gives improved char yields when
compared with diallyl isophthalate (DAIP). Since the cyanurate also is
somewhat better solvent for most of the resins tested, DAIP was eliminated
as a primary unsaturated monomer candidate.

TGA analyses in air and nitrogen were run on additional cured prepoly-

mer-monomer blends. Test results are summarized in Table 5. Typical TGA
curves are shown in Figures 17 and 18. The data show char yields up to 25
percent at 800°C under nitrogen without any significant difference resulting
from a wide variation of mole ratios of polyester reactants, including in-
creasing phthalate/diphenate ratios (Prepolymers P12, P13, P14, and P4)

and increasing 2,7-naphthalene diol/BHPF ratios (Prepolymers P15, P16, P17,
and P13),

The data also show that DVB and TAC monomers when tested neat do
not provide char yields at 800°C. Blends of prepolymers with other monomers
give char yields approximately in proportion to the prepolymer content of
the mixture.

This indicates that all or most of the blended resins char is from
the polyester prepolymer portion of the system. Consequently, based on a
monomer free system, the polyester portion of the resin is estimated to

have a char yield of about 40 percent. The overall char yields of prepolymer-

monomer blends can therefore be increased above 25 percent by reducing the
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monomer content of the blends. Char yields uf 25 (or 40 percent) percent
are about in the range expected for other addition cure resins such as
epoxies, but represent a significant improvement over commercial polyester
type materials such as Shell Epocryl 12 or Silmar S389A which are included
in Table 5 for comparison.

Final Blend (Resin) Selection for Composite Evaluation

Prepolymer P16 was further evaluated at higher ratios with monomers
to improve the char yield and to approach the same stoichiometry used in
commercial polyester resins. The typical value of 30 weight percent monomer
in commercial resins is equivalent to about 15 percent monomer in these
aromatic polyester resins because of the higher molecular weights of the
aromatic portions of the prepolymers.

It was found that styrene was the only monomer that would dissolve
the prepolymer at these higher concentrations, and since it was previously
observed that the monomer did not contribute to the char yield, the monomer
of choice became styrene. It was also hoped that the styrene would reduce
the brittle nature of resin system. Quantities of TAC and DVB monomers
were also added to increase the crosslink density and thereby to improve
the thermal properties of the system,

The cured resins were characterized by DTUL* analysis and TGA. The
results of these tests are summarized in Table 6. The cured resins were all
dark and brittle. The resin with 80 percent polyester prepolymer had the
greatest ambient toughness. However, it can be seen in Table 6 that the
OTUL of this sample was significantly lower than resins with other monomer
levels. Small samples of the resin with 75 percent polyester prepolymer
would not support 3.1 MPa (449 psi) compressive load required for DTUL at RT
(brittle failure) and the DTUL was determined at 0.6 MPa (90 psi).

*DTUL = Distortion Temperature Under Load (See Appendix A).
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TGA analysis in air and nitrogen of the cured resins gave significantly
better results (Y.800 = 41 percent) than reported above (Yc800 = 25 percent).
The higher yields may be due to the higher cure temperature used with these
samples (200°C instead of 180°C). At this temperature, unreacted styrene
monomer can be expected to be lost from the cured polymer. The higher char

yields also result from use of higher prepolymer levels in the Table 6
resins.

Curing Agent Studies and Selection for Final Blend (Resin)

Polyester resins are typically cured with an organic peroxide (free
radical) initiator. Styrene containing polyester resins are most frequently
cured with methylethylketone peroxide, or benzoyl peroxide, while allyl "‘
type polyester resins require a higher temperature cure and use a peroxide '
such as dicumyl peroxide. Numerous other peroxides are sold commercially '

that offer various advantages but these peroxides usually sell at a higher
price.

To obtain optimum cures, it is normal to use two (or more) peroxides
to smooth out the cure. Typically, a low temperature "smooth" peroxide is
used to cause the resin to solidify, and a higher temperature "powerful"
peroxide is used to complete the cure after the liquid phase can no longer
evaporate and cause voids.

A study of various curing agents for aromatic polyester prepolymer-
divinylbenzene, triallyl cyanurate, and styrene blends indicated that a
: combination of "USP-245" and "500T" peroxides gives a satisfactory smooth
} cure which results in a hard (brittle) polymer. The "USP-245" causes the
system to gel between 70° to 90°C thus preventing blowing from volatiliza-
i tion of the unreacted monomers. This catalyst alone does not give hard
cures particularly with allyl monomers. The final cure is accomplished
with the "500T" peroxide at about 180°C. One disadvantage with this catalyst
system is that the "USP-245" peroxide can be expected to limit the shelf
| life of the catalyzed resin. However, it was found that a 10 gram mass of
the laminating resin did not gel in a week at ambient temperatures. The

e — —— =
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other disadvantage is that the system is "air inhibited". [f a dab of resin .
is allowed to rest undisturbed on an aluminum surface at 90°C, the unexposed }1

. ‘.NJ

(to air) material wiil gel in five to ten minutes, however, the same material
will thicken but never gel if it is probed constantly under the same condi-
‘ tions.

An initial screening study to select a suitable peroxide initiator
was run on various combinations of TAC and DVB, and eventually on P16 pre-
polymer-TAC-DVB blends. The studies were run on gram quantities of resin in
one dram vials, using various peroxides levels and stepped cure cycles
between 60°C and 180°C with an overall heating ratio of 2%C/minute. The
peroxides that were evaluated are given in Table 7.

The data showed that "USP-245" gave the best results at low tempera-
tures and "500T" gave the best cures at higher temperatures. Hard-clear
cures were also achieved with "130", "USP-333", and "Vulcup R". The other
peroxides resulted in foaming, or cheesy systems.

Combinations of TAC and DVB cured with USP-245 and 500T under similar
conditions as above showed that a weight ratio of 60/40 TAC/DVB cured with
one percent USP-245 and two percent 5007 gave near optimum results. All
the systems that cured hard and clear, also cracked or shattered due to the
high cure shrinkage. When several polyester prepolymers (P6, P7 and P12)
were added to the TAC/DVB blends or with styrene, at a 50 weight percent
level, and the systems cured as shown, the samples no longer cracked. How-

ever, the resulting polymers were very brittle.

] When the bulk of the monomer was replaced with styrene, it was necessary
to re-evaluate the catalyst system, particularly because of the brittle
nature of the cured polymer.

The USP-245 and Lucidol 500T catalyst system is designed for higher
A temperature cures which are needed with allyl monomers. Styrene based poly-
; esters are typically cured at lower temperatures using MEKP (methylethylketone
peroxide) or BZP (benzoyl peroxide) catalysts.
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Six formulations were prepared representing combinations of two poly-
ester backbones cured with MEKP, BZP and USP-245 catalysts. The combinations
are shown in Table 8. The catalyst concentrations were selected based on
the manufacturers recommendations. None of these formulations showed a
substantial improvement in toughness over previous compositions, and the
DTUL results (180°C cure) indicated that the USP-245 catalyst gave the best
cure,

Based on these results, the USP-245 - 500T catalyst system was
retained for use with the styrene monomer system. The 5007 concentration
was reduced to one percent since the resin no longer contained a high per-
centage of triallyl cyanurate.

GRAPHITE COMPOSITES

Fiber Selection

Thornel 300 (3000 count) carbon fiber was selected as the reinforce-
ment for use in the polyester resin composites. This selection was made due
to its general useage by the airframe industry.

A survey of carbon fiber manufacturers, including Union Carbide, .
Celanese, and Hercules, in an attempt to find a fiber with a polyester com- i
patible size, was unsuccessful.

The development of a suitable polyester compatible size was
beyond the scope of this program, however two modifications to the carbon ]
fibers were contemplated. One modification was to react the epoxy finish i
on the fibers with acrylic or methacrylic acid to make the "vinyl ester". i
The other modification was to use heat cleaned fibers, however it was
decided that these fibers would be too difficult to process. ;

Six composites were made using Thornel 300 fiber and polyester resin
made with the P16 prepolymer and styrene. The physical properties of these g
composites are given in Table 9. The resin composition and typical J
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fabrication procedure used on all the composites is given in the experimental
section of this report.

Due to difficulties in completing the vacuum impregnation at 150%F
with the polyester prepolymer with 25 parts of styrene (25 parts styrene:
100 parts polyester prepolymer), the ratio of styrene was increased to 30
parts for prepreg preparation for laminates 3 through 6.

The general quality of the laminates is far from optimum. In flexural
testing, they failed in shear. The failures appear to be caused by poor
fiber wetting and/or low mechanical strength of the resin. Poor wetting
of the fibers is likely to be caused by the lack of a polyester compatible
sizing on the fibers. The UC 309 sizing on the T-300 fibers is epoxy compa-
tible. The sizing may also inhibit the cure of the polyester resin. The
fiber finish problem remains unresolved.

Another possible explanation for the poor shear strength is that too
much styrene may be lost during the fabrication step. Without adequate
monomer present, fumaric acid unsaturation is difficult to react under the
cure conditions, and tends to dimerize rather than polymerize.

DTUL tests on the composites at 3.1 MPa (449 psi) showed that the
composites are benefited by postcure. A sample from the 6" x 6" composite
showed a DTUL of only 54°C after 175°C cure. Air postcure for one hour at
175°C raised its DTUL to 114°C and an air postcure at 200°C for one hour
raised the DTUL to 135°C. With this postcure schedule however, the DTULs
of all the composites were not the same. The DTULs of the composites
ranged from a low of 116°C to a high of 135°C. Varying styrene contents in
the composites may be the cause of this variation.

Based on these DTUL data the isothermal aging temperature and upper
composite test temperature of 82°C (180°F) was selected. This temperature
was also selected since many aircraft materials are evaluated and qualified
for use at this temperature.
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C-scan tests on the six composites were run at Automation Industries
in Richmond, California. The tests were run using an Automation Industries
Immerscope Model 721, using a 5 MHz transmitter (0.5 inch) and pulser and
a 2.25 MHz receiver (0.75 inch). The tests were conducted at two power
Jevels representing high and low sensitivity to voids. The two power levels
were separated by 10 to 12 decibels. C-scans of the laminates are given
in Appendix B. Figure B2A, at low sensitivity, shows a visible to the eye
delamination in the lower right corner, it also shows the 6.3 x 6.3 mm
metal reference in the upper left corner. A similar reference is also
present in the lower right corner, but it is obscured by the delamination.
Figure B2B shows the same composite at a 12 decibel increase in sensitivity.
The image now shows increased void areas and voids parallel to the fiber
direction, which are assumed to be unwetted fibers.

The other five composites provided similar scans. At low sensitivity,
the composites are relatively free of imperfections, while at high sensitivity
they show large void areas and significant quantities of unwetted fibers.

An attempt to correlate C-scan tests results on Laminate No. 4 with
the mechanical property data discussed below (flexural testing) failed to
show correlation.

Laminates 3, 4 and 6 were cut into flexure and shortbeam shear speci-
mens, and postcured for one hour at 200°c. Weight Tosses between 1.1 and
3.7 percent were observed during postcure which is likely due to styrene
loss.

The specimens were split into eight groups for isothermal aging at
82°C (180%F). Specimens were removed from the aging oven after one week,
three weeks and twelve weeks (2016 hours) and tested at both room tempera-
ture and 82°C. The data obtained from the tests are presented in Tables
10 and 11, The highest shortbeam shear value obtained was 23.9 Mpa
(3500 psi), the highest flexural strength and modulus 619 MPa (82.800 psi)
and 142.7 GPa (20.7 x 106 psi) respectively. The flexural specimens failed
in shear.
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These values are unacceptably low and as previously discussed, thought
to principally be due to poor fiber wetting. Isothermal weight loss data
on a specimen from Laminate No. 6 at 82°C over the same period varied between
-0.03 and +0.01 percent without any discernable trend.
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SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

PROGRAM CONCLUSIONS

Significant improvements in the anaerobic char yield at 800°C of
unsaturated polyesters were achieved by this program. Conventional
polyesters provide char yields of five percent or less whereas the
developed unsaturated polyester provided char yields of 40+ percent.
This prepolymer consisted of phthalic, fumaric and diphenic acids
reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxyphenyl)
fluorene.

Combinations of aromatic diacids and diols to produce vinyl-monomer-
soluble prepolymers were developed. Thus, even though several
aromatic polyester prepolymers produced good char yields, these pre-
polymers had very limited solubility in vinyl monomers. The use of
the cross-planar diol, 9,9-bis(4-nydroxyphenyl)fluorene, which signi- ¢
ficantly lowered the crystallinity of the aromatic polyester prepoly-
mers, provided prepolymers which were soluble in styrene up to 85
weight percent. These styrene soluble prepolymers were also very
soluble in divinylbenzene, triallyl cyanurate, diallyl isophtha-

late and methylvinylpyridine,

RPN - 1 755,

None of the reactive monomers investigated was found capable

of producing char at 800°c (NZ)' However, the addition of char

producing catalyst to monomers and/or prepolymers was not investigated .
extensively. Phosphorus compounds in some blends did show positive

effects toward char production.




RECOMMENDATIONS

ro
.

The developed homogeneous, unsaturated polyester blends were cured
with radical catalysts used with conventional polyester systems.
State-of-the-art processing was used to produce several graphite
composites.

The graphite composites produced from the high char yield polyester
had low shear strengths.

Efforts toward the development of a high char yield unsaturated
polyester resin system should be continued. Graphite composites
represent a single useful application for such a resin system.
Conventional polyesters are used, however in a number of applica-
tions where increased fire resistance would be most welcomed.

The investigation of the developed polyesters' ability to produce
high strength graphite composites must include resin-fiber compa-
tibility studies. Resin modifications as well as use of wetting
and coupling agents are expected lead to much improved composite
strengths.

From its handling properties, the developed aromatic unsaturated
polyester resin appears to be somewhat brittle. The investigation
of flexiblizers such as propylene glycol in the polyester backbone
needs investigation.
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SECTION V
EXPERIMENTAL

2,6-Naphthoyl Chloride

21.6 Grams (0.10 mole) of 2,6-naphthalene dicarboxylic acid and 50 ml
of thionyl chloride were placed in a dry 100 ml three neck round bottom
flask equipped with a stirrer, thermometer, condenser, and dry nitrogen
supply. Fifteen drops of pyridine were added and the reaction mixture was
heated with stirring to gentle reflux (66°-68°C) for one hour. The excess
thionyl chloride was stripped off under vacuum, and the reaction mixture
taken up in 100 ml of boiling toluene. The hot toluene solution was filtered
through a fiberglass plug and 20.4 grams (81 percent yield) of yellow needles
were collected from the filtrate after cooling. The observed melting point
was 179°-182°C (corrected) compared to a reported melting point of 182°-5°C
(G.L. Driscoll, Chem. Abstracts 71:81024B).

s Polyester Resin (P4)

3.8g (0.015 Mole) of 2,6-naphthoyl chloride and 2.3g (0.015 mole)
of fumaryl chloride were dissolved in ten times their weight (61g) of dry
tetrahydrofuran. This solution was shaken vigorously for five minutes
| with a solution consisting of: 4.0g (0.025 mole) of 2,7-naphthalene diol
f and 1.44g (0.01 mole) of 1-naphthol dissolved in ten times their weight of
water (55g) containing an additional 10.5g of KC1 (16 percent KC1 solution)
and 3.08g (0.077 mole) of NaOH. The weight of NaOH was slightly in excess.
The prescribed quantity of NaOH was 1.1 times the equivalent of phenolic OH
(0.066 mole). The reaction mixture exothermed to about 35°C upon mixing of  °
the solutions.
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The reaction mixture was poured into 300 ml of water and filtered.
The powdery precipitate was washed three times with water, followed by three

washings with ethyl alcohol. The product was dried at 120°C under vacuum
and yielded 6.3g (67 percent) of greyish tan powder.

p-Phenylene bis(magnesium bromide)

Magnesium turnings (3.65g, 0.15 mole) and 6 m1 dry THF were placed in
a 200 m1 flask equipped with a stirer, condenser, addition funnel and dry
nitrogen purge. p-Dibromobenzene (17.70g; 0.075 mole) was dissolved in 38
ml of dry THF and added dropwise from the additional funnel after a crystal of
iodine had been added. After the addition was complete, 75 ml of dry THF
was added and the reaction was refluxed overnight yielding a yellow solution
and insoluble white product. The solution was removed with a filter stick
and the residue was washed twice with 100 and 150 ml portions of hot dry THF
followed by a \'ash with 50 ml of hexane. The product was transferred to an
addition funnel with hexane for immediate use. The yield was approximately
8 grams (38 percent). Caution: The product is reported to be pyrophoric.

p-Phenylene-bis(phenylphosphonylchloride)

ey

Approximately 40 grams of phenyl phosphonyl dichloride was distilled
under vacuum into a dried reaction flask. The flask was equipped with a
stirrer, addition funnel, condenser and dry nitrogen purge - 35 ml of hexane
was added and approximately 8 grams of p-phenylene bis(magnesium bromide)
dispersed in 70 ml of hexane was added over a period of one hour. Residual
Grignard reagent was washed from the addition funnel with 100 ml of addi-
tional hexane (Note: frequent plugging).

A slight exotherm occurred during the addition and a yellow oil
separated from the reaction mixture. After addition was complete the reaction
was stirred for an additional two hours. The liquid was removed from the
salts with a filter stick and washed with 50 m1 of hexane. The combined
liquids were distilled at atmospheric pressure to remove the solvent and
finally under vacuum to remove excess phenylphosphonyl dichloride (BP 105°¢)
The product was a yellow liquid that darkened somewhat during the final stages
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of phenylphosphonyl dichloride removal. On cooling, the product was a viscous

100 Gram Prepolymer Synthesis (P16)

To a three liter flask equipped with an air powered stirrer, thermo-
meters and addition funnels, was added 390g water, 570g tetrahydrofuran (THF)
167g, KC1, 37.7g 50 percent NaOH and 12.0g (0.075 mole) 2,7-naphthalene diol.
The homogeneous mixture was cooled in an ice bath and 431 grams of ice was
added. The contents of three addition funnels were then added rapidly with
vigorous stirring. Funnel number one contained 10.2g (0.050 mole) phthaloy]l
chloride, 23.0g (0.150 mole) fumaryl chloride, 27.9g (0.100 mole) diphenoyl
chloride and 122g THF. The second funnel contained 61.2g (0.175 mole) 9,9-
bis(4-hydroxyphenyl)fluorene (BHPF) and 200g THF. The third funnel contained
28.8g water, 15.1g 50 percent NaOH and 14.4 (0.100 mole) l-naphthol. The
contents of funnel one were added at the same time as the contents of fun-
nels two and three. The contents of funnel three were added immediately after
funnel two was empty. All additions occurred in less than one minute. The
funnels were then washed with 150 grams of THF and the washings added to the
reaction mixture. The initial temperature of the completed mixture was 50¢.
After 20 minutes of vigorous stirring, the temperature was 10°C and mild
warming with a hot water bath was started. When the temperature reached
30%C (10 minutes) the reaction mixture was poured rapidly into 5¢ of distilled
water and a gummy precipitate formed rapidly. The liquid was decanted from
the product and then washed twice with water, followed by two washings with

isopropanol. The putty-like residue was dried in a vacuum oven for three
hours at 120°C, ground and passed through a 30 mesh sieve, and redried in
2 the vacuum oven for three hours. The resulting yellow-tan powder weighed
111.0g (87.4 percent of theory).

Typical Laminating Prodecure (Laminate #3)

ﬁ Laminate Resin: Parts by

ii Weight

. Polyester Prepolymer 100
Triallyl cyanurate 3

Styrene 30

glassy liquid. It weighed 12.5 grams (113 percent based on 8g of Grignard reagent).
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Laminate Resin: Parts by )
Weight %.
USP 245 (2,5-dimethy1-2,5-bis(2-ethyl- 1.33 :
hexanoy1peroxy )hexane
Luperox 500T (Dicumylperoxide) (Tech) 1.33

Reinforcement:

Union Carbide Thornel 300 fiber, Grade WYP 30 1/0, UC-309 size,
zero twist.

Apply a nominal nine mil coating to Mylar (3 mil) fiber using a hot
melt coater set at 150°F (12 mi1 gap). Overwrap the resin coating with the
reinforcement fiber. Impregnate the fibers using vacuum table with squeegee
at 150°F. The areal weights of the resin and fiber are respectively 139
and 186 g/mz. The prepreg at this stage is leathery and separates from the
Mylar without difficulty.

Fifteen plies of 4" x 4" prepreg are layed up in a trap mold between
layers of porous Teflon coated glass and two bleeder plies of Style 120
glass cloth. Vacuum pressure is applied to the part and the mold is placed
into an RT press under contact pressure only. The press is turned and set
at 350°F. When the resin thickens 50 psi was applied for Laminate #3.
This was after one hour and the temperature was 195%F. When the part reaches
350%F (2% wours), hold the temperature at 350°F for one hour.

The resulting composite had 64 volume percent fiber and 3.1 volume
percent voids, with an average thickness of 0.0995 inch.
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APPENDIX A
DISTORTION TEMPERATURE UNDER LOAD

Distortion temperature under load (DTUL) is carried out on a small
cured sample of resin with essentially parallel faces as sketched in Figure
A-1. The intercept of the expansion curve with the softening curve (or a
decrease in slope of the expansion curve) is taken as the temperature at
which the sample will no longer support the compressive load placed upon it.

L DTUL experiments are conducted using a 0.635 mm (0.025 inch) diameter
flat bottom probe that has a 100g load perpendicular to the test surface.
This places a 3.1 MPa (449 psi) stress on the sample. Heating rates

are at 15°C/minute.

The suggested performance temperature is 50°C below the DTUL tempera-
ture for extended service.
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SKETCH OF SET-UP TO DETERMINE DISTORTION TEMPERATURE UNDER LOAD (DTUL)
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APPENDIX B
C-SCAN OF POLYESTER-CARBON FIBER COMPOSITES
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Fiber Direction

Figure BlA,
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Figure B1B.
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Fiber Direction

Figure B2A.

Fiber Direction

Figure B28B.

C-scan of carbon fiber reinforced polyester Laminate #2 at

low sensitivity.
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5007
BHPF
BZP
CHP
DHN
DTUL
bvB
MEKP
Mvp
NDCA
PA
PBW
PPDC
PPPC
TAC
TGA
THF

vep
800
YC

APPENDIX C
ABBREVIATIONS

Dicumyl Peroxide
9,9-bis(4-hydroxyphenyl)fluorene
Benzoyl Peroxide

Cumene Hydroperoxide

Dihydroxy Naphthalene

Distortion Temperature Under Load
Divinyl Benzene

Methylethylketone Peroxide
2-Methy1-4-Vinylpyridine
2,6-Naphthalene Dicarboxyiic Acid
Phthalic Acid

Parts by Weight

Phenylphosphonyl Dichloride

p-Phenylene di(phenylphosphonyl chloride)

Triallylcyanurate
Thermogravmetric Analysis
Tetrahydrofuran
4-Vinylbipheny]

Char yield at 800°C
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